EXPLORE INTERACTION AND DIGITAL IMAGES

Homomorphic Factorization of BRDFs for High-Performance Rendering

Michael D. McCool

Jason Ang

Anis Ahmad

University of Waterloo

Outline

- Introduction
- Previous Work
- Factorization
- Results
- Conclusions

- What is a bidirectional reflectance distribution function (BRDF)?
- Why use BRDFs?

Introduction

- BRDF properties:
 - Helmholtz reciprocity
 - Conservation of energy
- BRDF classes:
 - Isotropic
 - Anisotropic

BRDF

• Functional notation:

• Assume shift-invariant:

• Omit wavelength dependence:

Local Lighting Equation

Outgoing radiance from point in direction :

• Illumination from N point sources:

Previous Work

- Basis summation
 - Ward, Lafortune, Foo, Torrance, Greenberg
- Environment mapping
 - Kautz, McCool, Vazquez, Heidrich, Seidel
- Factorization
 - Kautz, McCool, Vazquez, Heidrich, Fournier

Previous Work

- Factorization
 - eg. SVD approach (Kautz and McCool)

Factorization

Approximate f using product of positive factors:

Take logarithm of both sides:

 Notice this is just a linear data-fitting problem:

Parameterization

- Choose parameterization:
 - Easy to compute parameters
 - Three factors stored in two texture maps

• Take logarithm:

Data Constraints

- Need to find p and q:
 - Set up linear constraints relating samples in f to texels in p and q

Use bilinear weighting factors

Smoothness Constraints

Previous equation can be rewritten as:

Smoothness Constraints

 Add constraints to equate Laplacian with zero:

Ensures every texel has a constraint

 $\forall \lambda$ controls the smoothness of solution

Iterative Solution

- Solve using quasi-minimal residual (QMR) algorithm in IML++
 - Freund and Nachtigal (1991)
 - Estimate an initial solution by averaging
 - Apply at multiple resolutions
- Divide p and q by their maximums and combine scale factors into a single colour α

Rendering

Reconstruction equation:

- N passes on the NVIDIA GeForce 3 using
 - OpenGL 1.2
 - Multitexturing extensions
 - Register combiner extensions
 - Vertex program extensions
 - Compositing

2001 EXPLORE INTERACTION AND DIGITAL IMAGES

Results

- Top to bottom: p', q' texture maps (32 x 32) and α .
- Left to right: satin (Poulin-Fournier analytic), leather, velvet (CUReT), garnet red, krylon blue, cayman, mystique (Cornell).

Results

- Venus de Milo model with 90752 triangles
- Pentium 4 1.4 GHz, 640 MB, NVIDIA
 GeForce 3 AGP 4x @ 1280x1024x32bit
- Standard OpenGL Lambertian lighting:
 - 123 fps, 11.2 Mtri/s
- Full illumination:
 - 76 fps, 6.9 Mtri/s

Approximation Error

Live Demo

Conclusions

- New BRDF factorization algorithm
 - Achieves reasonable compression ratios
 - Minimizes relative error in approximation
 - Flexible choice of parameterization
 - Results are positive factors
 - Can handle sparse data, reuse texture maps
 - Renders in real-time rates in current hardware

Acknowledgements

- Jan Kautz, Wolfgang Heidrich
- David Kirk, Matthew Papakipos, Mark Kilgard, Chris Wynn, Cass Everitt, Steve Glanville, NVIDIA
- Josée Lajoie, Kevin Moule, Martin Newell,
 Mira Imaging, Inc., Viewpoint Engineering
- CUReT, Cornell, Syzmon Rusinkiewicz
- NSERC, CITO